Molecular dynamics and binding specificity analysis of the bovine immunodeficiency virus BIV Tat-TAR complex.

نویسندگان

  • C M Reyes
  • R Nifosì
  • A D Frankel
  • P A Kollman
چکیده

We have performed molecular dynamics (MD) simulations, with particle-mesh Ewald, explicit waters, and counterions, and binding specificity analyses using combined molecular mechanics and continuum solvent (MM-PBSA) on the bovine immunodeficiency virus (BIV) Tat peptide-TAR RNA complex. The solution structure for the complex was solved independently by Patel and co-workers and Puglisi and co-workers. We investigated the differences in both structures and trajectories, particularly in the formation of the U-A-U base triple, the dynamic flexibility of the Tat peptide, and the interactions at the binding interface. We observed a decrease in RMSD in comparing the final average RNA structures and initial RNA structures of both trajectories, which suggests the convergence of the RNA structures to a MD equilibrated RNA structure. We also calculated the relative binding of different Tat peptide mutants to TAR RNA and found qualitative agreement with experimental studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics and solvation dynamics of BIV TAR RNA-Tat peptide interaction.

The interaction of the trans-activation responsive (TAR) region of bovine immunodeficiency virus (BIV) RNA with the Tat peptide is known to play important role in viral replication. Despite being thoroughly studied through a structural point of view, the nature of binding between BIV TAR RNA and the BIV Tat peptide requires information related to its thermodynamics and the nature of hydration a...

متن کامل

An RNA-binding peptide from bovine immunodeficiency virus Tat protein recognizes an unusual RNA structure.

The human immunodeficiency virus (HIV) Tat protein binds specifically to an RNA hairpin, TAR, located at the 5' end of its mRNA. Tat uses a single arginine residue within a short region of basic amino acids to recognize a bulge region in TAR. Here we show that a 17 amino acid arginine-rich peptide from the bovine immunodeficiency virus (BIV) Tat protein also binds to an RNA hairpin at the 5' en...

متن کامل

Altering the context of an RNA bulge switches the binding specificities of two viral Tat proteins.

The bovine immunodeficiency virus (BIV) Tat protein binds with high affinity to its TAR RNA site through a large set of specific RNA-protein contacts whereas human immunodeficiency virus (HIV) Tat makes relatively few contacts to HIV TAR and requires the assistance of a cellular protein to bind with high affinity. The two TAR sites are structurally very similar, but BIV Tat appears unable to ma...

متن کامل

A single intermolecular contact mediates intramolecular stabilization of both RNA and protein.

An arginine-rich peptide from the Jembrana disease virus (JDV) Tat protein is a structural "chameleon" that binds bovine immunodeficiency virus (BIV) or HIV TAR RNAs in two different binding modes, with an affinity for BIV TAR even higher than the cognate BIV peptide. We determined the NMR structure of the JDV Tat-BIV TAR high-affinity complex and found that the C-terminal tyrosine in JDV Tat f...

متن کامل

Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex.

BACKGROUND In lentiviruses such as human immunodeficiency virus (HIV) and bovine immunodeficiency virus (BIV), the Tat (trans-activating) protein enhances transcription of the viral RNA by complexing to the 5'-end of the transcribed mRNA, at a region known as TAR (the trans-activation response element). Identification of the determinants that account for specific molecular recognition requires ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 80 6  شماره 

صفحات  -

تاریخ انتشار 2001